A two-dimensional dam-break flow simulation model for preparing emergency action plans

Dr. Soumendra Nath Kuiry
Assistant Professor

Environmental and Water Resources Engineering Division
Department of Civil Engineering
IIT Madras

March 24, 2015
Outline

Dams in India

Dam-break modelling

Model verification and validation

EAP for dam-break floods

Conclusions
Dams in India

- Large Dams: 5125
- Importance of Dams
- Lack of funds for maintenance
- Floods due to Dam failure
- EPA for dam-break floods
EAP Components (CWC 2006):

- Notification flowcharts
- Responsibilities
- Emergency identification, evaluation and classification
- Notification procedure
- Preventive action
- Inundation map (from dam-break model)
- Appendices for supporting materials
Infrastructures form a complex network. Failure of an infrastructure may cause failure to other systems.

Failure front, which may be quite different than flood front.

Fig. 1: Inundation map with failure fronts
Available Dam-break Flow Models

- **1D Models**: MIKE 11, HEC-RAS
- **2D Models**: MIKE 21, TUFLOW, CLAWPACKS

Limitations of available models

- Dam-break model with GPU
- Integrated GIS and Dam-break model
Governed Equations

\[
\begin{align*}
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} + \frac{\partial G(U)}{\partial y} &= S(x,y,U) \quad (2D \text{ depth-averaged shallow water equation})
\end{align*}
\]

where,

\[
U = (H, \quad q_x, \quad q_y)^T
\]

\[
F = \left(q_x, \quad \frac{q_x^2}{h} + \frac{gh^2}{2}, \quad \frac{q_x q_y}{h} \right)^T
\]

\[
G = \left(q_y, \quad \frac{q_x q_y}{h}, \quad \frac{q_y^2}{h} + \frac{gh^2}{2} \right)^T
\]

\[
S = \left(0, \quad gh(S_{0x} - S_{f_x}), \quad gh(S_{0y} - S_{f_y}) \right)^T
\]

Notations

- **U** = Variable vector
- **F, G** = Convective flux
- **S** = Source term
- **H** = Water depth
- **h** = Water depth
- **z_b** = Channel bed elevation
- **S_{ox}, S_{oy}** = Bed slopes
- **S_{fx}, S_{fy}** = Friction slopes

Fig. 1: Definition sketch
Numerical Solution

- **Time discretization**: Explicit forward Euler scheme
- **Space Discretization**: Finite volume method
- **Convective flux**: HLLC Riemann solver
- **Source terms**: Friction by semi-implicit and bed slope by well-balanced method
- **Accuracy**: Second-order accurate in space and first-order in time
- **Stability criteria**: Courant condition
- **Computational grid**: Unstructured quadrilateral
Model Validation
Partial Dam-break in Laboratory Flume

Experiment: Fraccarolo and Toro (1995)

- Reservoir: 1 m long and 2 m wide
- Floodplain: 3 m long and 2 m wide
- Gate width: 0.4 m
- Quadrilaterals: 6141

<table>
<thead>
<tr>
<th>Stations</th>
<th>-5A</th>
<th>C</th>
<th>0</th>
<th>4</th>
<th>8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (m)</td>
<td>0.18</td>
<td>0.48</td>
<td>1.00</td>
<td>1.00</td>
<td>1.722</td>
</tr>
<tr>
<td>y (m)</td>
<td>1.00</td>
<td>0.40</td>
<td>1.00</td>
<td>1.16</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 1: Locations of stage Gauges

Fig. 2: Computational mesh for the partial dam-break test and gauge locations
Fig. 3: Computed and measured depth evolutions at different gauges
Dam-break flow in a Converging-Diverging Channel

Experiment: Bellos et al. (1992)

- Length: 20.7 m, Slope: 0.006
- Manning’s $n = 0.012 \text{ m}^{-1/3}\text{s}$
- Gate located at: 8.5 m
- Initial Water level in the reservoir: 0.3 m
- Quadrilateral Cells: 5047

Fig. 4: Geometry of the converging-diverging channel
Fig. 5: Converging-diverging section of the computational grid for the dam-break test case by Bellos et. al. (1992)

Fig. 6: Computed and measured flow depth comparisons at: (a) $x = 0.0$ m (b) $x = 4.5$ m and (c) $x = 18.5$ m
Laboratory Dam-break over a Triangular Hump

Experiment: CADAM Project, EU

- Manning’s n: 0.0125 m$^{-1/3}$s$^{-1}$
- Square Cells: 0.1 m × 0.1m
- Dam located at: 15.5 m

Fig. 7: Definition sketch of the experimental set up for dam break over a triangular hump (distorted scale)
Fig. 8: Depth profiles at gauges: (a) G4, (b) G10, (c) G11 and (d) G20
Fig. 9: Sardis lake partial dam-break simulation for 72 hrs on 30 m DEM
EAP for Dam-break Floods

Flood at a dam site:

- Sudden uncontrolled release
- Excessive controlled release
- Release caused by damage to or failure of the dam

EAP Preparation:

- Low-hazard dams
- Significant-hazard dams
- High-hazard dams
The model can generate following information for EAP preparation:

- The extent of the flooded area
- Spatial distribution of flood depth at various times
- Spatial distribution of flood velocities in two horizontal directions at different times
- Flood arrival time at each point of the computational domain
- Duration of the flood at each point of the computational domain
The Right Model for Preparing EAP

- The computation time should be reasonable – GPU implementation
- Computational grid – DEM may be better choice
- Smooth flow of data – model integration with GIS
- Visualization – GIS and Google Earth
- Low-cost EAP preparation – web based remote computations
• Minimal hydrology or modeling skills required by user
• Minimal user input
 ✓ Dam location and height
 ✓ Reservoir maximum volume
 ✓ Bridge locations
 ✓ Reservoir bathymetry or outflow hydrograph not required
 ✓ No expensive workstation or GIS software required at the user end
• Simple dam break analysis through remote server
 ✓ Total and instantaneous dam break
 ✓ Flood maximum depths and arrival time results
• Transfer of selective maps to the user for EAP preparation
Conclusions

- A 2D dam-break model is presented
- The model uses finite volume method and the HLLC Riemann solver
- The model is validated against a number of experimental observations
- The model can be used for preparing inundation maps for different dam-break scenarios
- The inundation maps can be used to prepare EAP for dam-break floods
Thank You

Comments and Suggestions